PTEN interacts with metal-responsive transcription factor 1 and stimulates its transcriptional activity.
نویسندگان
چکیده
MTF-1 (metal-responsive transcription factor 1) is an essential mammalian protein for embryonic development and modulates the expression of genes involving in zinc homoeostasis and responding to oxidative stress. We report in the present paper that PTEN (phosphatase and tensin homologue deleted on chromosome 10) associates with MTF-1 in the cells. These two proteins interact via the acidic domain of MTF-1 and the phosphatase/C2 domain of PTEN. Depletion of PTEN reduced MT (metallothionein) gene expression and increased cellular sensitivity to cadmium toxicity. PTEN did not alter the nuclear translocation, protein stability or DNA-binding activity of MTF-1. Zinc increased MTF-1-PTEN interaction in a dose-dependent manner. The interaction elevated within 2 h of zinc addition and declined afterwards in the cells. The enhanced binding activity occurred mainly in the cytoplasm and reduced after translocating the MTF-1 into the nucleus. Blocking signalling through the PI3K (phosphoinositide 3-kinase) pathway did not alter the zinc-induced MT expression. Analysis of enzymatically inactive PTEN mutants demonstrated that protein but not lipid phosphatase activity of PTEN was involved in the regulation of MTF-1 activity. The same regulatory role of PTEN was also noted in the regulation of ZnT1 (zinc transporter 1), another target gene of MTF-1.
منابع مشابه
CREB is a novel nuclear target of PTEN phosphatase.
PTEN phosphatase is a potent tumor suppressor that regulates multiple cellular functions. In the cytoplasm, PTEN dephosphorylates its primary lipid substrate, phosphatidylinositol 3,4,5-trisphosphate, to antagonize the phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway. It has also become increasingly evident that PTEN functions in the nucleus and may play an important part in transcrip...
متن کاملA conserved cysteine cluster, essential for transcriptional activity, mediates homodimerization of human metal-responsive transcription factor-1 (MTF-1).
Metal-responsive transcription factor-1 (MTF-1) is a zinc finger protein that activates transcription in response to heavy metals such as Zn(II), Cd(II) and Cu(I) and is also involved in the response to hypoxia and oxidative stress. MTF-1 recognizes a specific DNA sequence motif termed the metal response element (MRE), located in the promoter/enhancer region of its target genes. The functional ...
متن کاملNuclear PTEN functions as an essential regulator of SRF-dependent transcription to control smooth muscle differentiation
Vascular disease progression is associated with marked changes in vascular smooth muscle cell (SMC) phenotype and function. SMC contractile gene expression and, thus differentiation, is under direct transcriptional control by the transcription factor, serum response factor (SRF); however, the mechanisms dynamically regulating SMC phenotype are not fully defined. Here we report that the lipid an...
متن کاملActivity of metal-responsive transcription factor 1 by toxic heavy metals and H2O2 in vitro is modulated by metallothionein.
Metallothioneins are small, cysteine-rich proteins that avidly bind heavy metals such as zinc, copper, and cadmium to reduce their concentration to a physiological or nontoxic level. Metallothionein gene transcription is induced by several stimuli, notably heavy metal load and oxidative stress. Transcriptional induction of metallothionein genes is mediated by the metal-responsive transcription ...
متن کاملKeap1-Independent Regulation of Nrf2 Activity by Protein Acetylation and a BET Bromodomain Protein
Mammalian BET proteins comprise a family of bromodomain-containing epigenetic regulators with complex functions in chromatin organization and gene regulation. We identified the sole member of the BET protein family in Drosophila, Fs(1)h, as an inhibitor of the stress responsive transcription factor CncC, the fly ortholog of Nrf2. Fs(1)h physically interacts with CncC in a manner that requires t...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Biochemical journal
دوره 441 1 شماره
صفحات -
تاریخ انتشار 2012